machine learning

1 Settembre 2025

« Back to Glossary Index

Formalmente, il Machine Learning è un ramo dell’intelligenza artificiale che si concentra sullo sviluppo di sistemi che possono apprendere dai dati senza essere programmati esplicitamente. A differenza dei metodi tradizionali di programmazione, dove le regole sono definite a priori, il ML utilizza algoritmi che identificano pattern, relazioni e strutture nei dati per costruire modelli predittivi. Questi modelli vengono poi utilizzati per effettuare previsioni su nuovi dati, migliorando la loro accuratezza con l’aumento della quantità di dati di addestramento. L’apprendimento può essere supervisionato (con dati etichettati), non supervisionato (senza dati etichettati) o per rinforzo (attraverso interazione con un ambiente).

L’importanza del ML nella finanza quantitativa è innegabile. Permette di analizzare enormi dataset di dati di mercato, notizie, dati macroeconomici e dati alternativi per identificare opportunità di investimento non visibili con metodi tradizionali. Ad esempio, un algoritmo di apprendimento supervisionato potrebbe essere addestrato su dati storici di prezzi azionari e indicatori economici per prevedere la direzione futura del prezzo di un’azione. Un modello potrebbe raggiungere un’accuratezza del 65%, significativamente superiore al 50% di un semplice lancio di una moneta, generando un alpha significativo nel lungo periodo. Altri esempi includono la classificazione del credito, la gestione del rischio di portafoglio (identificando correlazioni non lineari) e il trading ad alta frequenza.

I vantaggi del ML includono la capacità di gestire grandi quantità di dati, identificare pattern complessi non lineari, adattarsi a dati in evoluzione e automatizzare processi decisionali. Tuttavia, esistono anche dei limiti. La qualità dei modelli dipende fortemente dalla qualità dei dati utilizzati per l’addestramento; dati incompleti, rumorosi o distorti possono portare a modelli imprecisi. Inoltre, la “scatola nera” di alcuni algoritmi rende difficile interpretare le decisioni prese dal modello, creando problemi di trasparenza e fiducia. Infine, il rischio di overfitting (adattamento eccessivo ai dati di addestramento) può portare a performance scadenti su dati nuovi. È quindi cruciale una valida validazione del modello e una comprensione approfondita dei suoi limiti.

In conclusione, il Machine Learning offre strumenti potenti per la finanza quantitativa, ma richiede una profonda conoscenza sia degli algoritmi che dei dati. Una combinazione di competenze matematiche, statistiche e informatiche, oltre a una solida comprensione dei mercati finanziari, è essenziale per un utilizzo efficace ed etico del ML nel contesto finanziario. La continua ricerca e sviluppo in questo campo promettono ulteriori innovazioni e applicazioni nel futuro, ma è fondamentale mantenere un approccio critico e consapevole dei potenziali rischi.

« Back to Glossary Index
Analisi Quantitativa Definitiva su Microsoft (MSFT): Il DNA Statistico di un Titano di Mercato dal 2006 a Oggi

Analisi Quantitativa Definitiva su Microsoft (MSFT): Il DNA Statistico di un Titano di Mercato dal 2006 a Oggi

Questo studio conduce un’analisi di profiling quantitativo approfondita sulla serie storica del titolo Microsoft (MSFT.US) dal 2006 al 2025. Il problema affrontato è la caratterizzazione del comportamento statistico dell’asset per superare le analisi discrezionali e identificare vantaggi competitivi (“edge”) oggettivi. La metodologia impiega un approccio modulare basato su Python, analizzando persistenza, regimi di mercato e ciclicità. Il risultato più significativo è l’identificazione di un chiaro trend rialzista, punteggiato da opportunità tattiche di tipo mean-reverting, specialmente in contesti di bassa volatilità, offrendo un framework robusto per investitori e trader sistematici.

leggi tutto
Analisi Quantitativa (NVDA): Decodificare il DNA di un Titolo da -90% a +10.000% con un Approccio Sistematico

Analisi Quantitativa (NVDA): Decodificare il DNA di un Titolo da -90% a +10.000% con un Approccio Sistematico

Affrontiamo il problema di navigare l’estrema volatilità di un titolo come NVIDIA (NVDA.US) attraverso un’analisi quantitativa rigorosa. Utilizzando un approccio sistematico in Python su dati giornalieri dal 2006 al 2025, abbiamo eseguito un “profiling” completo per identificare vantaggi statistici ricorrenti. Il risultato più significativo è l’individuazione di un doppio “edge”: una forte anomalia stagionale rialzista nel mese di

Agosto e una robusta tendenza al ritorno alla media (mean reversion) a seguito di forti ribassi, quantificati da uno Z-Score inferiore a -1.88. Questo studio fornisce un framework replicabile per trasformare l’analisi storica in un concreto piano operativo.

leggi tutto
Analisi Quantitativa dei Drawdown su Apple (AAPL): L’Edge Statistico del “Buy the Dip” dal 2006 a Oggi

Analisi Quantitativa dei Drawdown su Apple (AAPL): L’Edge Statistico del “Buy the Dip” dal 2006 a Oggi

Questo studio di Kriterion Quant analizza in modo multidimensionale tutti gli episodi di drawdown del ticker Apple (AAPL.US) a partire dal 01-01-2006. La ricerca trasforma la percezione del rischio associata ai crolli di mercato in un’opportunità strategica quantificabile. Basandosi su un algoritmo Python, lo studio valida statisticamente le strategie “buy the dip”. Il risultato più significativo è che l’acquisto sistematico al minimo di un drawdown superiore al 10% ha storicamente generato un rendimento medio del +14.46% a 1 mese, con un win rate del 100%, fornendo un framework operativo per investitori evoluti e trader sistematici.

leggi tutto

Pronto a Iniziare il Tuo Percorso nel Trading Quantitativo?

Se sei motivato ad apprendere un approccio rigoroso e sistematico, Kriterion Quant è il percorso che fa per te. Con il nostro supporto personalizzato e le nostre strategie concrete, sarai guidato dalla teoria alla pratica, trasformando la tua passione per i mercati in una competenza professionale. La tua avventura nel mondo della finanza quantitativa inizia qui.

I backtest e le analisi quantitative presenti su questo sito sono simulazioni basate su dati storici e hanno uno scopo puramente informativo ed educativo. Le performance passate non sono indicative né una garanzia dei risultati futuri.  Nessun contenuto di questo sito costituisce consulenza finanziaria o sollecitazione all'investimento. L'utente è l'unico responsabile di ogni propria decisione.

Preferenze Cookie