clustering

1 Settembre 2025

« Back to Glossary Index

Formalmente, il clustering è un problema di partizionamento di un insieme di dati in gruppi (cluster) in modo che gli elementi all’interno di ogni cluster siano più simili tra loro rispetto agli elementi di altri cluster. La similarità è misurata da una metrica di distanza, come la distanza euclidea o la distanza di Mahalanobis, scelta in base alla natura dei dati. Diversi algoritmi di clustering, come k-means, hierarchical clustering e DBSCAN, utilizzano diverse strategie per ottimizzare questa partizione, cercando di massimizzare la coesione interna dei cluster e minimizzare la separazione tra di essi.

L’importanza del clustering in finanza risiede nella sua capacità di estrarre informazioni significative da grandi dataset senza la necessità di etichette predefinite. Ad esempio, nel portfolio management, il clustering può essere utilizzato per identificare gruppi di azioni con profili di rischio e rendimento simili, facilitando la costruzione di portafogli diversificati e ottimizzati. Immaginiamo di avere dati storici su 100 azioni, caratterizzate da rendimento, volatilità e beta. Applicando un algoritmo k-means con k=3, potremmo ottenere tre cluster: azioni a bassa volatilità e basso rendimento, azioni a media volatilità e rendimento, e azioni ad alta volatilità e alto rendimento. Questa segmentazione permette di costruire portafogli mirati a specifici profili di rischio.

Un altro utilizzo pratico è la segmentazione della clientela. Le banche possono utilizzare il clustering per raggruppare i clienti in base al loro comportamento finanziario, alle loro preferenze di investimento e alle loro caratteristiche demografiche. Questo permette di personalizzare i prodotti e i servizi offerti, migliorando l’esperienza del cliente e aumentando la fidelizzazione. Ad esempio, un cluster potrebbe essere composto da giovani investitori con un profilo di rischio elevato, mentre un altro potrebbe includere investitori anziani con un profilo di rischio conservativo. Questa informazione è preziosa per la pianificazione delle strategie di marketing e di vendita.

Nonostante i suoi vantaggi, il clustering presenta anche dei limiti. La scelta del numero di cluster (k nel k-means) è spesso arbitraria e può influenzare significativamente i risultati. Inoltre, la sensibilità alla scelta della metrica di distanza e all’algoritmo utilizzato può portare a risultati diversi. Infine, l’interpretazione dei cluster richiede una profonda conoscenza del dominio e può essere soggettiva. È quindi fondamentale una attenta valutazione dei risultati e una validazione attraverso metodi appropriati.

« Back to Glossary Index
Analisi Sistema SPX: Rilevata Euforia Decorrelata – Report Kriterion Quant 12 Novembre 2025

Analisi Sistema SPX: Rilevata Euforia Decorrelata – Report Kriterion Quant 12 Novembre 2025

Questa settimana, il report del Sistema V4.0 Kriterion Quant, basato sui dati aggiornati all’11 Novembre 2025, rileva una condizione di mercato critica: “Euforia Decorrelata”. Di conseguenza, il modello quantitativo raccomanda un posizionamento tattico di “Esposizione Ridotta SPX (40%)”. Questa analisi scompone i dati alla base di questo segnale.

leggi tutto
Analisi Rotazione Settoriale RRG: 08 Novembre 2025 (Analisi Rotazionale Settimanale)

Analisi Rotazione Settoriale RRG: 08 Novembre 2025 (Analisi Rotazionale Settimanale)

L’analisi RRG settimanale dell’08 novembre 2025 rivela una situazione di mercato eccezionalmente concentrata: il settore Technology (XLK) mantiene la leadership assoluta come unico settore in quadrante Leading, mentre tutti gli altri 10 settori GICS rimangono bloccati in territorio Lagging.

Rispetto alla settimana precedente, XLK mostra un lieve raffreddamento (RS-Ratio da 110.6 a 107.5) pur mantenendo momentum positivo. Il movimento più significativo riguarda Utilities (XLU), che subisce un deterioramento del momentum nonostante un apparente avvicinamento al benchmark.

La distanza euclidea tra Tech Basket e Defensive Basket si riduce da 12.63 a 10.32 punti, segnalando una convergenza parziale, ma il regime rimane Risk-On con correlazione negativa persistente (-0.193).

Operativamente, si raccomanda di mantenere overweight su Technology con trailing stop, evitare entry premature su Utilities, e attendere segnali concreti di rotazione verso altri settori prima di riallocare il portafoglio.

leggi tutto

Pronto a Iniziare il Tuo Percorso nel Trading Quantitativo?

Se sei motivato ad apprendere un approccio rigoroso e sistematico, Kriterion Quant è il percorso che fa per te. Con il nostro supporto personalizzato e le nostre strategie concrete, sarai guidato dalla teoria alla pratica, trasformando la tua passione per i mercati in una competenza professionale. La tua avventura nel mondo della finanza quantitativa inizia qui.

I backtest e le analisi quantitative presenti su questo sito sono simulazioni basate su dati storici e hanno uno scopo puramente informativo ed educativo. Le performance passate non sono indicative né una garanzia dei risultati futuri.  Nessun contenuto di questo sito costituisce consulenza finanziaria o sollecitazione all'investimento. L'utente è l'unico responsabile di ogni propria decisione.

Preferenze Cookie