overfitting

1 Settembre 2025

« Back to Glossary Index

Formalmente, l’overfitting si riferisce a una situazione in cui un modello statistico o un algoritmo di machine learning presenta un’elevata accuratezza sui dati utilizzati per l’addestramento (in-sample), ma una bassa accuratezza sui dati non utilizzati per l’addestramento (out-of-sample). Questo accade perché il modello ha imparato il rumore e le peculiarità specifiche dei dati di training, anziché le relazioni generali e significative che governano il fenomeno in esame. In sostanza, il modello ‘memorizza’ i dati di training invece di ‘imparare’ da essi.

L’importanza di evitare l’overfitting è cruciale in finanza quantitativa, dove la capacità di un modello di generalizzare a dati futuri è fondamentale per il successo. Un modello overfittato, pur mostrando risultati eccellenti sui dati storici, fallirà miseramente nel predire il futuro, portando a perdite significative. Immaginiamo, ad esempio, un modello di previsione del prezzo delle azioni addestrato su dati del 2022. Se il modello overfitta, potrebbe catturare eventi specifici di quell’anno (come un evento geopolitico o una specifica politica monetaria) che non sono rappresentativi del comportamento a lungo termine del mercato. Di conseguenza, il modello sarà impreciso nel prevedere i prezzi nel 2023.

Nella pratica, l’overfitting viene mitigato attraverso diverse tecniche. Una strategia comune è la cross-validation, che divide i dati in sottoinsiemi per addestrare e validare il modello ripetutamente. Altre tecniche includono la semplificazione del modello (riducendo il numero di parametri), la regolarizzazione (aggiungendo penalità alla complessità del modello, come L1 o L2 regularization), e l’utilizzo di tecniche di ensemble come il bagging e il boosting. Consideriamo un esempio semplificato: se addestiamo una regressione lineare con 100 punti dati e 99 parametri, il modello si adatterà perfettamente ai dati di training (errore zero), ma sarà altamente overfittato e avrà prestazioni pessime su nuovi dati. Al contrario, un modello con pochi parametri, anche se con un errore di training maggiore, potrebbe generalizzare meglio.

Nonostante i suoi limiti, l’overfitting non è sempre negativo. In alcuni casi, un modello leggermente overfittato può fornire prestazioni migliori rispetto a un modello troppo semplificato, soprattutto se il rumore nei dati di training è informativo in qualche modo. Tuttavia, è fondamentale trovare un equilibrio tra la complessità del modello e la sua capacità di generalizzazione. La scelta della tecnica di mitigazione dell’overfitting dipende dal contesto specifico e dalle caratteristiche dei dati, richiedendo una profonda comprensione sia dei dati che degli algoritmi utilizzati.

« Back to Glossary Index
Analisi Sistema SPX: Rilevata Euforia Decorrelata – Report Kriterion Quant 12 Novembre 2025

Analisi Sistema SPX: Rilevata Euforia Decorrelata – Report Kriterion Quant 12 Novembre 2025

Questa settimana, il report del Sistema V4.0 Kriterion Quant, basato sui dati aggiornati all’11 Novembre 2025, rileva una condizione di mercato critica: “Euforia Decorrelata”. Di conseguenza, il modello quantitativo raccomanda un posizionamento tattico di “Esposizione Ridotta SPX (40%)”. Questa analisi scompone i dati alla base di questo segnale.

leggi tutto
Analisi Rotazione Settoriale RRG: 08 Novembre 2025 (Analisi Rotazionale Settimanale)

Analisi Rotazione Settoriale RRG: 08 Novembre 2025 (Analisi Rotazionale Settimanale)

L’analisi RRG settimanale dell’08 novembre 2025 rivela una situazione di mercato eccezionalmente concentrata: il settore Technology (XLK) mantiene la leadership assoluta come unico settore in quadrante Leading, mentre tutti gli altri 10 settori GICS rimangono bloccati in territorio Lagging.

Rispetto alla settimana precedente, XLK mostra un lieve raffreddamento (RS-Ratio da 110.6 a 107.5) pur mantenendo momentum positivo. Il movimento più significativo riguarda Utilities (XLU), che subisce un deterioramento del momentum nonostante un apparente avvicinamento al benchmark.

La distanza euclidea tra Tech Basket e Defensive Basket si riduce da 12.63 a 10.32 punti, segnalando una convergenza parziale, ma il regime rimane Risk-On con correlazione negativa persistente (-0.193).

Operativamente, si raccomanda di mantenere overweight su Technology con trailing stop, evitare entry premature su Utilities, e attendere segnali concreti di rotazione verso altri settori prima di riallocare il portafoglio.

leggi tutto

Pronto a Iniziare il Tuo Percorso nel Trading Quantitativo?

Se sei motivato ad apprendere un approccio rigoroso e sistematico, Kriterion Quant è il percorso che fa per te. Con il nostro supporto personalizzato e le nostre strategie concrete, sarai guidato dalla teoria alla pratica, trasformando la tua passione per i mercati in una competenza professionale. La tua avventura nel mondo della finanza quantitativa inizia qui.

I backtest e le analisi quantitative presenti su questo sito sono simulazioni basate su dati storici e hanno uno scopo puramente informativo ed educativo. Le performance passate non sono indicative né una garanzia dei risultati futuri.  Nessun contenuto di questo sito costituisce consulenza finanziaria o sollecitazione all'investimento. L'utente è l'unico responsabile di ogni propria decisione.

Preferenze Cookie