garch

3 Settembre 2025

« Back to Glossary Index

Formalmente, un modello GARCH(p,q) specifica la varianza condizionale di una serie temporale come funzione autoregressiva di p errori al quadrato passati e q varianze condizionali passate. La sua equazione è data da: σ²t = ω + α₁ε²t-1 + … + αpε²t-p + β₁σ²t-1 + … + βqσ²t-q, dove σ²t è la varianza condizionale al tempo t, εt è l’errore (o innovazione) al tempo t, e ω, αi, e βj sono parametri non negativi. Il modello assume che gli errori siano distribuiti in modo indipendente e identicamente (i.i.d.), spesso con una distribuzione normale o student-t. La somma dei parametri αi e βj deve essere minore di 1 per garantire la stazionarietà della varianza condizionale.

L’importanza del GARCH risiede nella sua capacità di modellare la volatilità clustering, un fenomeno comune nei mercati finanziari dove periodi di alta volatilità tendono a seguire periodi di alta volatilità, e viceversa. A differenza dei modelli di volatilità costanti, GARCH cattura questa dipendenza temporale nella volatilità, fornendo previsioni più accurate e realistiche. Questo è cruciale per la gestione del rischio, l’ottimizzazione del portafoglio e la valutazione delle opzioni, dove la volatilità gioca un ruolo fondamentale.

Nella pratica, i modelli GARCH vengono utilizzati per prevedere la volatilità futura, ad esempio, per calcolare il Value at Risk (VaR) di un portafoglio. Consideriamo un esempio semplificato: un modello GARCH(1,1) con parametri stimati ω = 0.001, α₁ = 0.1, e β₁ = 0.8. Se l’errore al quadrato del periodo precedente è stato ε²t-1 = 0.04 e la varianza condizionale del periodo precedente è stata σ²t-1 = 0.02, la varianza condizionale prevista per il periodo corrente sarebbe σ²t = 0.001 + 0.1(0.04) + 0.8(0.02) = 0.025. Questa previsione può poi essere utilizzata per calcolare la deviazione standard condizionale (volatilità) e, di conseguenza, il VaR.

Nonostante i suoi vantaggi, GARCH presenta anche dei limiti. La sua performance può essere sensibile alla scelta dei parametri (p,q) e alla distribuzione degli errori. Inoltre, potrebbe non catturare adeguatamente eventi di volatilità estremi (code pesanti) o cambiamenti strutturali nella volatilità. Esistono varianti più sofisticate di GARCH, come EGARCH (Exponential GARCH) e GJR-GARCH (Glosten-Jagannathan-Runkle GARCH), che cercano di affrontare alcuni di questi limiti, ma la scelta del modello più appropriato dipende dal contesto specifico e dalle caratteristiche dei dati.

« Back to Glossary Index
I Livelli di Fibonacci Funzionano?  Scopriamolo con l’Analisi Quantitativa

I Livelli di Fibonacci Funzionano? Scopriamolo con l’Analisi Quantitativa

I livelli di Fibonacci sono tra gli strumenti più dibattuti dell’analisi tecnica. Questo studio quantitativo analizza 17.785 eventi di prezzo su 17 asset e 19 anni di dati storici, validando statisticamente l’efficacia dei ritracciamenti con simulazioni Monte Carlo. Risultato: i livelli 50%, 61.8% e 78.6% mostrano un edge significativo, mentre il 23.6% performa peggio del caso. Scopri su quali asset class funzionano meglio e come integrarli nella tua strategia.

leggi tutto
(SPX GEX Deep Dive Analysis) Scadenza: 16 Gennaio 2026 | Data Analisi: 24 Dicembre 2025

(SPX GEX Deep Dive Analysis) Scadenza: 16 Gennaio 2026 | Data Analisi: 24 Dicembre 2025

Analisi quantitativa della struttura opzionaria SPX per la scadenza 16 gennaio 2026. Il mercato si trova in regime Long Gamma pronunciato con Net GEX a +$6.79 miliardi. Lo Spot a 6909 è posizionato sopra il Gamma Flip (6878), mentre il VWAS a 7035 segnala un bias bullish. Il Call Wall a 7000 con oltre 151.000 contratti rappresenta la resistenza strutturale chiave. Report completo con supporti, resistenze e scenari operativi.

leggi tutto
(DAILY MARKET ANALYSIS) DMA System 22 Dicembre 2025

(DAILY MARKET ANALYSIS) DMA System 22 Dicembre 2025

Report quantitativo del 22 dicembre 2025: VIX a 14.08 conferma regime di bassa volatilità con SPY in uptrend sopra SMA200. I metalli preziosi guidano la classifica con SLV (composite 83.52) e GLD (82.86) in breakout sopra i massimi settimanali. Settori difensivi (Utilities, Real Estate, Consumer Staples) in sottoperformance con segnali di breakdown. 21 eventi tecnici rilevati. Watchlist operativa con setup long su SLV, GLD, EEM, QQQ e warning su UNG, XLU, XLRE.

leggi tutto

Pronto a Iniziare il Tuo Percorso nel Trading Quantitativo?

Se sei motivato ad apprendere un approccio rigoroso e sistematico, Kriterion Quant è il percorso che fa per te. Con il nostro supporto personalizzato e le nostre strategie concrete, sarai guidato dalla teoria alla pratica, trasformando la tua passione per i mercati in una competenza professionale. La tua avventura nel mondo della finanza quantitativa inizia qui.

I backtest e le analisi quantitative presenti su questo sito sono simulazioni basate su dati storici e hanno uno scopo puramente informativo ed educativo. Le performance passate non sono indicative né una garanzia dei risultati futuri.  Nessun contenuto di questo sito costituisce consulenza finanziaria o sollecitazione all'investimento. L'utente è l'unico responsabile di ogni propria decisione.

Ricevi Gratis Analisi Quantitative Ogni Settimana

Preferenze Cookie